Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Author index

Page Path
HOME > Browse Articles > Author index
Search
Hyo-Sang Yoo 2 Articles
The Effects of TiC Content on Microstructure of Modified A6013-3wt.%Si Alloy Powder Compact
Hyo-Sang Yoo, Yong-Ho Kim, Hyeon-Taek Son
J Powder Mater. 2022;29(1):28-33.   Published online February 1, 2022
DOI: https://doi.org/10.4150/KPMI.2022.29.1.28
  • 30 View
  • 0 Download
  • 1 Citations
AbstractAbstract PDF

Aluminum-based powders have attracted attention as key materials for 3D printing owing to their low density, high specific strength, high corrosion resistance, and formability. This study describes the effects of TiC addition on the microstructure of the A6013 alloy. The alloy powder was successfully prepared by gas atomization and further densified using an extrusion process. We have carried out energy dispersive X-ray spectrometry (EDS) and electron backscatter diffraction (EBSD) using scanning electron microscopy (SEM) in order to investigate the effect of TiC addition on the microstructure and texture evolution of the A6013 alloy. The atomized A6013-xTiC alloy powder is fine and spherical, with an initial powder size distribution of approximately 73 μm which decreases to 12.5, 13.9, 10.8, and 10.0 μm with increments in the amount of TiC.

Citations

Citations to this article as recorded by  
  • Influence of Curing Agent Amount on Properties of Dynamic Vulcanized Phenyl Silicone Rubber-SEBS-SBS System
    Chunxu Zhao, Bobing He, Xian Chen
    Polymers.2022; 14(24): 5443.     CrossRef
Effect of Sn Addition on Microstructure of Al Alloy Powder for Brazing Process
Yong-Ho Kim, Hyo-Sang Yoo, Sang-Su Na, Hyeon-Taek Son
J Powder Mater. 2020;27(2):139-145.   Published online April 1, 2020
DOI: https://doi.org/10.4150/KPMI.2020.27.2.139
  • 19 View
  • 0 Download
AbstractAbstract PDF

The powder manufacturing process using the gas atomizer process is easy for mass production, has a fine powder particle size, and has excellent mechanical properties compared to the existing casting process, so it can be applied to various industries such as automobiles, electronic devices, aviation, and 3D printers. In this study, a modified A4032-xSn (x = 0, 1, 3, 5, and 10 wt.%) alloy with low melting point properties is investigated. After maintaining an argon (Ar) gas atmosphere, the main crucible is tilted; containing molten metal at 1,000°C by melting the master alloy at a high frequency, and Ar gas is sprayed at 10 bar gas pressure after the molten metal inflow to the tundish crucible, which is maintained at 800°C. The manufactured powder is measured using a particle size analyzer, and FESEM is used to observe the shape and surface of the alloy powder. DSC is performed to investigate the change in shape, according to the melting point and temperature change. The microstructure of added tin (Sn) was observed by heat treatment at 575°C for 10 min. As the content of Sn increased, the volume fraction increased to 1.1, 3.1, 6.4, and 10.9%.


Journal of Powder Materials : Journal of Powder Materials